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I. INTRODUCTION

A "super-smart weapon" which outperforms our smart weapons just going
into the field, yet is much cheaper than those current systems? It sounds
like the answer to the Army's prayer for a method to cope with a dramatically
increasing threat. We think we have demonstrated the key ingredients of such
a system, through the marriage of a long-term fundamental effort at the
Missile Command, significant industrial developments, and recognition of how
this developing technology can pay off for the Army.

Through the application of some recent existing developments in optical
data processing, we can now propose to build a seeker which recognizes a tank
by its image, homes on it, and destroys it. The seeker autonomously detects
and locks on the target, provides guidance signals, reacquires if the target
is lost, and retargets if necessary. The sensor will fit in a submissile,
weigh under a pound, consume less than a watt of power, and possibly even cost
under $100.

In this report we will discuss the concept and its applications to set
the stage for our interest. The report will also cover the technological
advances we have made which make this concept feasible.

II. CONCEPT

The sections below will show how we have built an optical computer which
can:

" Autonomously acquire a target.

" Provide guidance signals.

" Discriminate.

* Operate against a variety of predetermined targets.

* Reacquire a temporarily obscured target.

* A significant development will also be shown which will allow this to be
*done in a small inexpensive package.

Figure I demonstrates the operation of our laboratory computer. The
image of the tank model is the desired target. The optical computer located
this target in the input scene, and showed its location in the correlator
output plane.

The optical computer could be used with any imaging sensor, such as
radar, mm, or IR. But it has its greatest potential in a direct visible
role, and we believe there are important applications in this role.
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A. REFERENCE E. INPUT SCENE

C. CORRELATOR OUTPUT

Figure 1. Demonstration of optical correlation.

The conceptual seeker takes the form of Figure 2.
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9 Figure 2. The optical correlator seeker in a visible mode.
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This sensor is designed to correlate to a target from the top, as in

Figure 3. It will recognize the target at any orientation, and operate over
a wide span of distances to the target. It can recognize and discriminate
between targets to about the same degree as a human can.

.. LESS THAN 1 POUND

LESS THAN 1 WATT

---- b NO MOVING PARTS

I" PROBABLY CHEAP

- CAPABILITY EXCEEDS
VERY LARGE DIGITAL COMPUTER

- STATUS 6.1 CRITICAL BARRIERS
OVERCOME AUGUST 1979

Figure 3. The simplest optical correlator seeker works on a top view.

Unlike many other "top attack" sensors, the optical correlator does not

need to search the field of view, or search the scene against the reference.

This allows it the time to select targets of lesser value, or to pull a fly-

out maneuver to look for targets, as in Figure 4.

IF THERE IS NO PRIMARY TARGET
IN THE FIELD OF VIEW,

OCS CAN SWITCH OR. SINCE IT DOES NOT

TO SECONDARY TARGETS NEED TO FALL TO SEARCH,

1E.G.. APC'S TRUCKS, IT COULD PULL A FLY-OUT
ETC.. OR ROADS) MANEUVER

/} : ...

IT COULD ALSO SWITCH AND LOOK AGAIN
WARHEAD MODES

iFigure 4. Alternate targeting mode.

The system could also perform some damage assessment, and retarget if

possible, as in Figure 5. The high resolution allows us to detect smoke,

flames, or debris flying off.

One application of our concept would be a guided mortar, such as GAMP.

The guided mortar provides the infantry company with tank killing firepower.
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IF THERE ARE IF ONE IS HIT,
MULTIPLE TARGETS, OCS WOULD REALIZE
OCS SELECTS ONE IT, AND SWITCH TO

OTHER AVAILABLE TARGETS

Figure 5. Damage assessment/retargeting.

The target probably will be acquired with the human eye, so the visible

operation of the optical seeker should be acceptable. The optical computer

can be configured to fit within an 81 mm package, and if cheap enough, could

be widely distributed.

A top attack anti-tank missile is another role. Concepts (FFAST, Tank

Breaker) using top attack are now popular, because of the vulnerability of

the tank on top. In this concept a shoulder fired missile would pull a
preprogrammed maneuver to fly a lofted trajectory, and then home on the top

of the target.

The ASSAULT BREAKER concept, or Corps Support Weapon System, proposes to

disperse submunitions over an area rich in targets. Coupled with long range

target acquisition, this system would interdict fighting material on its way

to the front.

In this role the exceptional computing power of the optical computer

comes into its own. This system automatically acquires and locks onto target.

It can discriminate between targets of interest. It can search a stored

*reference target array, and select targets of highest value. It could go

, after tanks, trucks, buildings, roads, bridges, or whatever is deemed of

value.

We optimistically expect that a given missile platform could carry more

submunitions using this technology, yet at a greatly reduced cost. The higher

versatility effectiveness of the optical system means it would be so effective

that it would be worth having, even if it didn't work in fog. Inclusion of a

few flares in the payload would provide for nighttime operation. In Europe,

1 morning fog can be quite prevalent, and last long enough for tactical use;

but an interdiction role may allow early use of the weapon system or waiting

a few hours for the right condition.

III. COHERENT OPTICAL CORRELATION

V Cross-correlation is a very effective method for recognizing images.

The advantages of using optical processing for cross-correlation are due to

6
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the large information handlin capacity of optical system. A modest system can
process scenes having over 10 resolution elements. Such a system handles two-

dimensional data isotropically and in parallel with the processing time
determined by the time required for data input and output. The large capacity
of optical storage media can be used to provide rapid access to a large number
of reference images.

The cross-correlation function is defined as

R fg(n, ) = f f f(x,y)g(x-n, y- )dx dy (i)

0 0

In this equation, f(x,y) describes a signal image (the real-time scene), and

g(x,y) describes a reference (the desired target). Rfg(n,C) then describes how

well the two match, and the location of a target in the scene.

This cross-correlation can be calculated through the use of Fouripr
transforms,

Rfg(nO)= f f F(p,q)G*(p,q) exp[-i2,(pn+qt)] dp dq (2)

where the Fourier transform of f(x,y) is defined as

F(p,q) = [f(x,y)] = fff(x,y) exp[- i2 (px+qy)] dx dy , (3)

and G* is the complex conjugate of the Fourier transform of g(x,y).

To implement (2) using optical techniques, an optical system such as the
one shown in Figure 6 is used. The reference scene g(x,y) is placed in the

front focal plane of the lens Ll and illuminated by coherent light; the Fourier
transform G(p,q) appears in the back focal plane. As can be seen in Figure 6,
a reference beam is used to holographically record G, i.e., the amplitude and
phase of G are recorded. The input can now be changed to f(x,y) as shown in

Figure 6B. The hologram in the back focal plane of Ll diffracts the product
of Fourier transforms FG* along the optical axis of L2. The lens L2 forms the
inverse Fourier transform, i.e., R(n,E) in its back focal plane.

This process was demonstrated in Figure 1. The image of a tank model was
used to form the reference filter as illustrated in Figure 1A. This reference

filter was matched against the input scene containing the tank as shown in
Figure lB. The correlator input, a spot of light in a dark background, is

V shown in Figure 1 at the same scale as the input scene. The presence of the

correlation spot identifies that the tank in the input scene is the same as
the reference and the location of the spot designates the location of the tank
in the scene. The small size of the correlation spot indicates the precision
with which the tank can be located. A measure of this precision, the half-

width at half-height of a trace through the correlation, was 1/12 of the tank
width in this example; and the signal/noise limited accuracy was 1/50 of the
tank width.

7
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9' Figure 6. The optical correlator.
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The laboratory correlator used in these experiments has been described
previously [1]. A major breakthrough a few years ago was the development of
real-time data input through use of a liquid crystal light valve (2,31. MICOM
participated in the funding of this development. The light source is a He-Ne
laser operating at 633 mm or a GaAlAs diode injection laser operating at 820 nm.
Reference filters are recorded on photographic plates with a He-Ne laser.
When correlating with a diode laser source, a scale change of the input image
is required to compensate for the change in wavelength from that used in fil-
ter recording.

A. Composite Filter

Earlier attempts at correlation guidance were sensitive to angular
orientation. Filter multiplexing was tried as a way to solve this problem
[4,51. Several reference filters, each of a different perspective of the
vehicle, were recorded at the same spatial location in the Fourier transform
plane. The exposure time of each of the N multiplexed filters was T/N, where
T is the exposure time for a single reference filter. Since only vehicle
recognition and location is required, the correlation functions of the super-
imposed filters co acide in the output plane.

Figure 7 shows a polar plot of the relative correlation peak amplitude
for an eight-fold multiplexed filter. Images of the vehicle are displayed
around the polar plot in Figure 7 to aid in visualization. Arrows on the
graph indicate the orientation used in recording the eight superimposed fil-
ters. The single reference filters produced a correlation peak whose ampli-
tude remained above 40% of its maximum over a 50' angular change. The eight-
fold multiplexed filter demonstrated similar performance over 3600. This
technique has solved the angular orientation problem.

A four-fold multiplexed filter demonstrated similar performance but the
correlation peak dipped below 40% of the maximum value at two orientations.
The choice of different recording positions and adjustment of individual fil-
ter exposure levels could make the angular response curve much more uniform.

A similar experiment successfully compensated for angle-of-view change in
elevation. The technique of multiplexing is expected to work equally well for
change of scale to operate over a variety of ranges to the target.

B. Discrimination

Does multiplexing destroy the filter's capacity to discriminate be-
tween various objects? A simple test was performed to compare the ability of
the filter to discriminate against a different model. The results of this
test are shown in Figure 8, where a single TV line through the correlation
peak is displayed for the case when the input image was Model A and when the
image was Model B. Model B was used to construct the filters.

The maximum peak amplitude for the eight-fold multiplex filter was un-
expectedly high: one-fourth the amplitude obtained when using a single fil-
ter. Linear recording theory predicts that the correlation peak should drop to
I/N2 of that of a single filter for single filter contributions, or to 1/N of
that of a single filter for simultaneous filter contributions (N is the number

'1 [, 9
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Figure 7. Correlation at any Aspect Angle with Multiplex Filter.

of superimposed filters). The abnormally large correlation peak amplitude
, may be the result of nonlinear recording and in-phase amplitude addition of

the correlation peaks from individual filters.

Our explanation of the origin of the angular insensitivity of the
multiplexed filter is purely speculative. The theory of two-dimensional
moment invariants [6] may provide an explanation and might be used for the
digital generation of this type of filter.

.J C. Multichannel Correlator

An input image can be correlated against a number of reference
filters within one optical system [7]. This can be used to obtain a 2

F correlation over a wide range of image angle or size, or input scene. A

10
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Figure 8. Target discrimination with the optical correlator.

filter array can be addressed by a holographic lens [8,9] or by multiple
light sources [101. The use of a light source array to address a corresponding
reference filter array is illustrated in Figure 9.

This allows each filter to be sequentially addressed, requiring no more
light power or detector sensitivity than a single channel correlator. A
search through a hierarchy of targets, e.g., tanks, armored personnel carriers,
trucks, etc., can also be performed. A two-channel correlator has demonstrated
continuous vehicle tracking [4].

INPUT IMAGE MATCHED FILTER

E #3

#E

#3 E -

.4 Figure 9. Multichannel optical correlator.

9(

4
°I

" I I ~ l . .. ... ....% _ I I~l I



D. Dic4e Laser Sources

One of the major barriers to fielded application of optical computers
is the use of large, non-rugged gas lasers for the light source. We have
solved this problem by designing and demonstrating a correlator which works
with room temperature cw diode injection lasers. These lasers typically have
an output power of 10 mW at 820 nm wavelength and require approximately 200 ma
at 2.5V or 0.5W of input power. The microscopic size and low power consumption
of these lasers make them suitable as light sources in a multichannel correla-
tor. A correlator with up to a 5 X 5 element source array addressing a cor-
responding reference filter array is feasible [10]. Suitable diode laser
arrays are available from manufacturers. The IR wavelength and limited co-
herence of currently available diode lasers make direct holographic
recording impossible. However, we have developed an indirect technique for
making filters for use in a diode laser correlator.

The light source temporal and spatial coherence requirements for coherent
optical correlation have been analyzed previously [11, 41. Relatively low
source coherence is required for low resolution input imagery.

The maximum spectral width, AA , that will have a negligible effect on
the correlation is

A
AXm N ' (4)

where X is the light source wavelength and N is the number of resolvable0
points across the image input to the correlator. For correlation on an entire
TV screen input using a diode laser with X = 820 nm, the maximum spectral0

bandwidth is 820 nm/512 or 1.6 nm. In practice the temporal coherence require-
ments are much less than this due to lower input image resolution and due to
the lower spatial frequency distribution recorded on the filter.

A change, S, in input scale is equivalent to a wavelength change

s(5)S =

therefore, the measured scale change tolerances can be used to determine the
spectral width tolerance for the correlator light source. Our earlier work
indicated a + 8% scale change tolerance for vehicle recognition [4,81, so the
light source bandwidth can be 0.16 A or 130 nm. Diode laser spectral band-

widths are 2 nm or less.

The spatial coherence or source size requirements can be determined by
measuring the tolerance of the correlation to lateral filter displacement.
A filter displacement is equivalent to a source displacement scaled by the
ratio of the transform lens and collimating lens focal lengths. In previous
ixperiments [4] using a coherent helium-neon laser source, a + 12 Um filter
displacement resulted in no more than a 3 dB decrease in correlation amplitude,
indicating that a 24 Um diameter source would be acceptable. An advantage of
using a less spatially coherent source is that the matched filter alignment

12



requirements are reduced [11, 12]. Matched filter correlation using a large
spatially noncoherent source has been demonstrated [13].

These considerations indicate that even light emitting diodes, with 30 nm
spectral width and 200 pm diameter emitting area, have adequate temporal and
spatial coherence for optical matched filter correlation. Light emitting
diodes will be evaluated in future work.

A comparison between coherent optical matched filter correlation using a
helium-neon laser and a diode laser is shown in Figure 10. The photograph of
the automobile was used to make a reference filter. This picture was auto=
correlated using helium-neon and diode laser sources with approximately 10 mW
output power. Traces through the correlation spots obtained with the two
sources are shown. The correlation linewidths are the same, as is expected
from the preceding discussion of coherence requirements.

3 m
-.------ 3 mm -------
MATCHED FILTER

INPUT

- &I

t~

He-NE LASER CORRELATION DIODE LASER CORRELATION

Figure 10. Performance of the Diode Laser Correlator
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Identification and tracking of this vehicle as it moves across a scene
is demonstrated in Figure 11. The reference filter shown in Figure 10 was
cross-correlated with the Input scene using a diode laser source. Photographs
of the correlator output plane and traces through the correlation spots are
shown below the corresponding input images, all to the same scale. The corre-
lation peak half-width at half-height, a measure of tracking accuracy, was
about 1/15 of the car's length.

Figure 11. Cross correlation vehicle tracking using a diode laser source
and the matched filter shown in Figure 10.

Packaging of a correlator in a configuration that can be fitted in a
small missile was also considered. Two miniature correlators were designed,
one a cylindrical package with the image input at the center and the other
rectangular with the input at one end.

Figure 12 shows a correlator folded into a 100 mm diameter cylindrical
package with air spacing between components. The correlator is contained
within the upper 2.5 cm section of the cylinder in the side view and the
diode laser or light emitting diode array and collimator occupies a portion of
the lower section. The input device is an optically addressed liquid crystal
light valve similar to those used in laboratory experiments. The correlator
output is detected by a solid state CCD detector array with peak sensitivity
near the diode laser wavelength. A lens LI, is used both as the collimating

lens and as the Fourier transform lens. The imaging lens L2 forms an image on

the coherent image forming light modulator. The specifications for this
correlator are listed in Table I.

.t
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DIODE
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- TECTOR F. T. FILTER MS__

ARRAY ARRAY LCM

Figure 12. A Cylindrical coherent optical correlator.

Table 1. Specifications for Cylindrical Correlator.

Correlator 2.5 cm x 10.0 cm diameter = 200 cm3

Collimator 1/2 of 2.5 cm x 10 cm diameter = 100 cm
3

300 cm
3

Input Image Size 20 nm x 20 ,mm

Input Data Size at 50 pts/mm, 106 pts

Power Consumption <1 W for laser diode

<1 W for detector array

Q2 W

Focal Length of LI  160 mm, f/8 operation

Note: Above does not include noncoherent imaging optics

15
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Figure 13 shows a correlator design contained within a transparent solid.
This monolithic construction increases mechanical rigidity and ruggedness and
eliminates the possibility of optical surface contamination. If an electronic
input coherent light modulator [14] is used, imaging lens L2 would'be eliminat-
ed. This correlator is compact enough to fit within an 81 mm mortar projec-
tile. Additional information on this design is presented in Table II.

LASER POLARIZING

DIODE 
BEAM

DETECTOR SPTTER IMAGING
ARRA ARYLENS

3.0 Cm t

- - g NONIOHERENT
-TO COHERENT

IMAGE CONVERTER
PRISM

MATCHED FILTER
ARRAY

10CM

Figure 13. A Monolithic coherent optical correlator.

Table 2. Specifications for Monolithic Correlator

Size 3 cm x 10 cmx 1.5 cm = 45 cm3

Input Image Size 15 x 15 mm

at 50 pts/mm, 5 x 105 pts

Power Consumption <1 W for laser diode

<0.1 W for liquid crystal cell

"4 W for detector array

2 W total

Lens L1  60 mm focal length, f/4

V
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IV. CONCLUSIONS

The developments in the field of optical data processing over the past
few years make this a technology ripe for exploitation by the Army. The work
described in this report has demonstrated a way of making optical computers
practical for missile applications. There will be spin-off to other areas,
including navigation and helicopter hover control. As we develop more
sophisticated multichannel, multiplex devices, we expect to demonstrate fire
and forget guidance for direct fire missiles.

I'
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